
Virtualization

CLOUD COMPUTING

UNIT -2

feedback/corrections : vibha@pesu.pes.edu VIBHA MASTI



































































































































































































VIRTUALIZATION

Abstraction of physical resources into logical view
compute memory storage networking

compute virtualization
server virtualization
virtual Machines break dependency b w Os and h w
um ost application
virtual Machine Monitor Vmm Hypervisor layerof S W

4 Type 1 Bare Metal

VMM b w hardware and Os
UMM directly manages hardware
umm acts as traditional Os
3 requirements
identical env to programs as original machine
at worst minor reduction in performance
VMM complete control of hardware

Eg Xen VMware ESX server IBM CPCMS

ii type 2 Hosted

UMM on top of OS
VMM software level representation of hardware
UMM can also be part of Os
Eg Oracle VirtualBox VMware Fusion KVM for Linux



































































































iii type 3 Hybrid

VMM directly on hardware but leverages features of
existingOs by running as a guest
Eg Ms virtual Server MS Virtual PC

PhysicalMachine

Os dual mode
Ringo kernel mode all physical resources
Ring3 user mode safe instructions guest oses in user
mode interrupt for privileged instructions and Vmm
takes control

or ring I



































































































PARAVIRTUALIZATION

Osmodified for guest
Similar but not identical softwareinterface to VMs
Unlike full transparent virtualization

AppApp AppApp AppApp AppApp

angst angst Maigitied maggistied

Hypervisor Hypervisor
x86 hardware x86 hardware

FULL VIRTUALIZATION PARAVIRTUALIZATION

Full intercepts g emulates privileged instructions at
runtime
Para guest of kernel modified a privileged instructions
replaced with hypercalls at compile time

Attempts to improve performance speed
Eg Xen KVM ESX
Read tb slides for more

Execution

d Direct Execution
Run most instructions directly on the hardware
How to ensure isolation
close to native performance

2 Trap and Emulate
a

trap to hypervisor when um tries to execute a sensitive
privileged instruction



































































































Innocuous instructions directly on hardware
Attempt to execute system instr in user mode
trap gpf general protection fault

a

trap to VMM running in Ring 0
UMM jumps to guest of trap handler
Issues
performance overhead
not all architectures support
sensitive instructions pushf popf
guest of can realize it is running at lower privilege
level CS codesegment
memory protection

strictly Virtualizable

If executed in a lower privilegedmode
all instr that access privileged state trap
all instr execute identically or trap

Binary Translation
Does not req hw virtualization features
Hypervisor examines guest os code for unsafe sensitive
but privileged instructions
Translates to safe privileged equivalents
supports full virtualization
Translation
4 Identical safe priv
Lii Inline translation simple dangerous
Iii Call outs other dangerous


































































141 Hardware assisted virtualization
2modes root g non root
Each has rings 0 3
VMs in non root hypervisor in root
sensitive instruction in non root
executedby non root proc
trap to hypervisor

QEMU
Quick emulator
Dynamic BT type2



































































































Address translation

is unvirtualized system
Each process has virtual address space
Its own page table

ii Virtualized system
Mms managephysical mem

Ca Nested Page Table
2 levels of translation
Newer no need for shadow better

Cb Shadow Page Table
Stw onlytechnique
Each guest Os Pt has separate Pt in VMM
mapping guest VA to host PA directly
Guest Pt modifications guest VA to guest PA
synced to shadow page tables
Intercept guest Pt modifications



































































































YO VIRTUALIZATION

3 ways
1 Full device emulation
2 Paravirtualization
3 Direct Yo

1 Full device emulation
Software in UMM
Acts as virtual device
yo access trapped in VMM

2 Paravirtualization Split Driver Hosted
Frontend driver Egbackend driver
Backend driver multiplexes yo data of diff VMs
Better performance
Higher Cpu overhead



































































































3 Direct Passthrough
VM directly accesses
Drivers on VM directly write to device registers
one VM per device
scalability limits

GOLDBERG POPEK PRINCIPLES

1974
Requirements for architecture to efficiently
support virtualization
Equivalence

Ii Resource control VMM total control of resources
Hii Efficiency majority of instruction without VMM

intervention trap
All instructions one of three types
d Privileged Cause trap
di sensitive access low level machine States

Behavior sensitive behavior depends on mode
control sensitive modify sys registers

Iii Safe



































































































Theorem 1

UMM maybe constructed if sensitive instructions
subset of privileged

Theorem 2

computer virtualizable if
Virtualizable and
VMM can be constructed for it no timing
dependencies

Theorem 3

Hybrid VMM can be constructed if sensitive
instructions subset of privileged

Note
old pre 2005 x86 not PG virtualizable
Read slides for eg

VM Migration

1 cold migration powered off
2 Offline non live paused
3 Live hot powered on no disruption to service

Reasons slides



































































































I COLD MIGRATION
VM execution suspended before migration
Resumed after
Memory pages migrated only once
short predictable

3 LIVE MIGRATION
Degrades performance of running apps
Twotechniques
Pre copy
Post copy

a Pre copytechnique
1 Select destination host
2 Reservation of resources
3 Iterative precopy rounds

execution state in memory
entire memory data transferred
migration controller keeps copying
stop when threshold reached

4 Stop and transfer UM state
suspend
copy remainder of memory
non memory Pu network States sent
downtime

5 Commitment
6 UM activation at destination

network connection redirected

Advantages
low downtime



































































































Disadvantages
repeated copying of dirty pages t increase
migration time

Eg KVM Xen VMware hypervisor

b Post copytechnique
Processor state transferred before memory
Instant resume
Memory contents transferred almost at once
after destination begins running
For pages not in TLB page fault generated
Pages fetched from source machine
techniques to reduce no of page faults
Demand paging page faults retransmission
from source
Slow simple
Active push keeps pushing pages
if page fault demand paging

Memory prepaging predicts memory pages
most likely to be accessed
reduce page faults

Disadvantages
every page fault suspends dest VM until
required page received

Issues with Live Migration

1 memorymigration
Internet Suspend Resume tree of small subfiles
that were modified since migration started



































































































2 File system migration
Two approaches
virtual disk contents transferred
global file system across possible um hosts
prevents file transfer

3 Network migration
VM assigned virtual IP address known to
other entities
migrating maintains IP address

CONTAINERS

Os level virtualization CXC
Run multiple isolated Linux systems on host with
single OS
own process a network space
shares host Os's kernel

Docker

create test ship deploy apps using containers
client server architecture
Docker client talks to Docker daemon CREST API
Daemon can be local or remote
Docker compose another client
Docker daemon can communicate with other dockerds
Docker client docker
Docker host runs daemon and hosts connects to a Docker
Registry



































































































Dockerobjects images containers networks volumes

d Images
read onlytemplate
instructions for creating container

eg image for a flask app original image of Python
with necessary dependencies
Dockerfile defines steps for creating image
4 each instruction creates layer in image
a layer set of files and file metadata
Dockerregistry stores Docker images

ii containers

ready apps created from image
Docker creates set of namespaces

Namespaces

All resources that a process sees namespace
container access namespace with subset of files of
physical machine
Docker namespace features
PID create Ns create process with that NS
UTS isolate hostnames
MNT
IPC
NET eachprocess within Ns has access to net devices etc
USR
Chroot file sys root each processhas its own Fs
CAP drop
groups account resource usage forprocs
access devices











































































resource limits
prioritization
accounting
control
injection

tasks assigned to cgroups
hierarchy for resources

Union Filesystem
Illusion of merging contents of several dirs into one
Layering of FS's

































	 mount –t unionfs –o dirs=/Fruits:/Vegetables none /mnt/healthy






































Devops

Shorten SDLC
Principles of continuous delivery
Every build potential release
Eliminate bottlenecks
Automate wherever possible
Trustworthy automated tests

Small changes



Container orchestration

Automates scaling management deployment
Immutable infrastructure

Kubernetes

objects

d Basic building objects

Pod group of containers

Service logical set ofpods policy endpoint

Volume persistent data

Namespace segment of cluster

discontrollers

Replicaset Rs guarantee availability of specified
no of identical pods

Deployment updates for pods in RS

Statefulset

Daemonset



Job creates pods runs task deletespods

KSS Architecture

cluster contains
Masternode
Workernodes


